Министерство здравоохранения Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИКО-СТОМАТОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ А.И. ЕВДОКИМОВА»

Кафедра общественного здоровья и здравоохранения

Рабочая тетрадь

Средние величины, виды и методы вычисления

Студент	
	(Фамилия. Имя Отчество)
Среднее про	фессиональное образование
Специальность	
	Курс
	Группа

20____г.

Раздел медицинская статистика.

Тема: Средние величины, виды и методы вычисления

УДК 614.2, 311.3 ББК 51.1, 60.6

Рецензент:

Доктор медицинских наук, профессор кафедры управления в здравоохранении и индустрии спорта ФГБОУ ВО Государственный университет управления Минобрнауки Российской Федерации О.В. Соболевская

Рекомендовано учебно-методическим советом ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России протокол №5 от 27.06.2018г. к изданию в качестве учебного пособия для студентов среднего профессионального образования

Авторы:

Лобанова Е.Е., доцент кафедры общественного здоровья и здравоохранения ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России, канд. мед. наук

Кочеткова И.О., доцент кафедры общественного здоровья и здравоохранения ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России, канд. мед. наук

Дедова Н.Г., доцент кафедры общественного здоровья и здравоохранения ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России, канд. мед. наук

Кузнецов Д.В., преподаватель кафедры общественного здоровья и здравоохранения ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России

Дизайн:

Лучинский А.В. преподаватель кафедры общественного здоровья и здравоохранения ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России, канд. мед. наук

Рабочая тетрадь «Средние величины, виды и методы вычисления»: учебное пособие / Е.Е. Лобанова, И.О. Кочеткова, Н.Г. Дедова, Д.В. Кузнецов. — М.: МГМСУ. 2018. — $30 \, \mathrm{c}$.

Учебное пособие разработано преподавателями кафедры общественного здоровья и здравоохранения Московского государственного медико-стоматологического университета имени А.И. Евдокимова.

Учебное пособие является частью учебно-методического комплекса по разделу «Медицинская статистика», в которое включены основные понятия, формулы расчетов, алгоритмы решения ситуационных задач, а также проверочные работы в форме тестовых заданий, вопросов и ситуационных задач, предназначенных для обеспечения качества подготовки студентов, приобретения базовых знаний.

Учебное пособие предназначено для аудиторной и самостоятельной работы студентов среднего профессионального образования медицинских вузов и медицинских училищ, составлено в соответствии с учебной программой и отвечает требованиям федерального государственного образовательного стандарта среднего профессионального образования.

УДК 614.2, 311.3 ББК 51.1, 60.6

- © МГМСУ им. А.И. Евдокимова, 2018
- © Лобанова Е.Е., Кочеткова И.О., Дедова Н.Г., Кузнецов Д.В.

СОДЕРЖАНИЕ

Введение	4
Средняя величина	5
Среднее квадратическое отклонение	7
Расчет простой средней арифметической величины	8
Расчет средней арифметической взвешенной величины	. 10
Расчет средней арифметической величины по способу моментов	. 12
Контрольные вопросы	. 15
Ситуационные задачи	. 17
Тестовые задания	. 27
Литература	. 30

ВВЕДЕНИЕ

Предлагаемое учебное пособие составлено преподавателями кафедры общественного здоровья и здравоохранения МГМСУ им. А.И. Евдокимова и предназначено для студентов специальностей среднего профессионального образования целью обеспечения качества подготовки студентов, приобретения базовых знаний по разделу «Медицинская статистика», одному дисциплин «Общественное ИЗ основных разделов здоровье здравоохранение» и «Организация профессиональной деятельности».

Применение методов медицинской статистики позволит студентам анализировать показатели здоровья населения и деятельности медицинских организаций, а также повышать профессиональную квалификацию и внедрять новые современные формы работы.

Учебное пособие отвечает современным требованиям, имеет четкую структуру изложения материала, примеры расчета и выводы, что позволяет студентам правильно интерпретировать полученные результаты.

Учебное пособие содержит контрольные вопросы, тестовые задания и ситуационные задачи для самостоятельного решения студентами, которые позволят оценить уровень компетенции у обучающихся и предназначено для аудиторной и самостоятельной работы студентов.

выражают благодарность факультета декану профессионального образования ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России – заслуженному врачу РФ, д.м.н., профессору Арутюнову С.Д. и заместителю декана факультета ФГБОУ ВО МГМСУ им. А.И. к.м.н., Евдокимова Минздрава России – доценту Грачеву Д.И. за разработки предоставленный материал ДЛЯ ситуационных задач ПО специальности Стоматология ортопедическая.

Среднее профессиональное образование

Средняя величина — это обобщающая количественная характеристика ряда измерений (вариационного ряда)
Вариационный ряд — это ряд измерений определенного признака, отличающихся друг от друга по величине и расположенных в определенном порядке (по степени возрастания или убывания вариант)
Характеристика вариационного ряда
V
p
n
Виды вариационных рядов
Простой вариационный ряд состоит из вариант, каждое значение
которой встречается
Взвешенный вариационный ряд состоит из вариант, значения
которых встречаются
Упорядоченный вариационный ряд – это ряд числовых измерений
признака, расположенных
Неупорядоченный вариационный ряд – это ряд числовых
измерений признака, расположенных

Виды средних величин
Средняя арифметическая величина (М)
Мода (Мо) – наиболее часто встречающаяся варианта
Медиана (Ме) – значение варианты,
Данные вариационного ряда симметричны, если
Способы расчета средней арифметической величины
Средняя арифметическая простая - вычисляется из вариационного
ряда,
Средняя арифметическая взвешенная – вычисляется из
вариационного ряда,
Средняя арифметическая по способу моментов - вычисляется
Область применения средних величин:

Среднее квадратическое отклонение (σ) — мера вариабельности вариационного ряда, характеристика разнообразия изучаемого признака. Область применения среднего квадратического отклонения 1	Средне	е профессиональное образование
вариационного ряда, характеристика разнообразия изучаемого признака. Область применения среднего квадратического отклонения 1		
вариационного ряда, характеристика разнообразия изучаемого признака. Область применения среднего квадратического отклонения 1		
вариационного ряда, характеристика разнообразия изучаемого признака. Область применения среднего квадратического отклонения 1		
вариационного ряда, характеристика разнообразия изучаемого признака. Область применения среднего квадратического отклонения 1		
вариационного ряда, характеристика разнообразия изучаемого признака. Область применения среднего квадратического отклонения 1		
вариационного ряда, характеристика разнообразия изучаемого признака. Область применения среднего квадратического отклонения 1		
вариационного ряда, характеристика разнообразия изучаемого признака. Область применения среднего квадратического отклонения 1		
вариационного ряда, характеристика разнообразия изучаемого признака. Область применения среднего квадратического отклонения 1		
	вариа	ционного ряда, характеристика разнообразия изучаемого
	Обла	сть применения среднего квадратического отклонения
	1.	
2.	,	
2.		
2.		
2.		
2.		
2.		
2.		
2.	,	
2.		
2.		
2		
2		
2		
2.	2	
	۷.	

здел медицинская ма: Средние велич	статистика. чины, виды и методы вычисления
3	
4	
4	
Расчет	простой средней арифметической величины
	простой средней арифметической величины
	Формула
	Формула
	Формула
	Формула
	Формула

Среднее профессиональное образование

Формула

$$\sigma = \pm \sqrt{\frac{\Sigma d^2}{n-1}}$$

•	 	 	

Задача 1

В городе К. в родильном доме за сутки родилось 10 детей с весом в граммах: 2900, 3000, 3100, 3200, 3500, 3600, 3700, 3800, 4100, 4300. Вычислить:

- 1. средний вес новорожденных (М);
- 2. среднее квадратическое отклонение (σ) и сделать вывод.

Этапы вычисления:

1. Расчет простой средней арифметической величины

$$\Sigma V = 2900 + 3000 + 3100 + 3200 + 3500 + 3600 + 3700 + 3800 + 4100 + 4300 = 35200$$

$$M = \frac{\Sigma V}{n} = \frac{35200}{10} = 3520r$$

2. Расчет среднего квадратического отклонения

_	_	
Вес ребенка в	d = V - M	d^2
граммах (V)		
2900	2900 - 3520 = -620	384400
3000	3000 - 3520 = -520	270400
3100	3100 - 3520 = -420	176400
3200	3200 - 3520 = -320	102400
3500	3500 - 3520 = -20	400
3600	3600 - 3520 = 80	6400
3700	3700 - 3520 = 180	32400
3800	3800 - 3520 = 280	78400
4100	4100 - 3520 = 580	336400
4300	4300 - 3520 = 780	608400
		$\Sigma d^2 = 1996000$

$$\sigma = \pm \sqrt{\frac{\Sigma d^2}{n-1}} = \pm \sqrt{\frac{1996000}{10-1}} = \sqrt{\frac{1996000}{9}} = \pm 470,9 \,\mathrm{f}$$

Вывод: средний вес новорожденных (M) составил 3520 г, $\sigma = \pm 470.9 \ \Gamma$.

Расчет средней арифметической взвешенной величины

1. _____


$$M = \frac{\Sigma V \cdot p}{n}$$

2

Число наблюдений n≤30

$$\sigma = \pm \sqrt{\frac{\sum d^2 \cdot p}{n-1}}$$

$$\sigma = \pm \sqrt{\frac{\sum d^2 \cdot p}{n}}$$

Задача 2

Вычислить:

- 1. среднюю арифметическую взвешенную величину (М) (среднюю длительность ВУТ у больных ОРВИ);
- 2. среднее квадратическое отклонение (о) и сделать вывод.

Таблица 1 - Результаты изучения длительности временной утраты трудоспособности (ВУТ) у больных ОРВИ

Длительность ВУТ в днях (V)	Число больных (р)	V·p	d=V- M	d²	d²·p
4	3	12	- 3,1	9,61	28,83
5	10	50	- 2,1	4,41	44,1
6	8	48	- 1,1	1,21	9,68
7	14	98	- 0,1	0,01	0,14
8	14	112	0,9	0,81	11,34
9	7	63	1,9	3,61	25,27
10	6	60	2,9	8,41	50,46
	n = 62	$\Sigma V \cdot p = 443$			$\Sigma d^2 \cdot p = 169,82$

Этапы расчета:

1. Расчет средней арифметической величины

$$M = \frac{\Sigma V \cdot p}{n} = \frac{443}{62} = 7,1$$
 дня

2. Расчет среднего квадратического отклонения

$$\sigma = \pm \sqrt{\frac{\Sigma d^2 \cdot p}{n}} = \pm \sqrt{\frac{169,82}{62}} = \pm 1,6$$
дня

Вывод: средняя длительность временной утраты трудоспособности (ВУТ) у больных ОРВИ (М) равна 7,1 дня, $\sigma = \pm$ 1,6 дня.

Расчет средней арифметической величины по способу моментов

1. _____

Среднее профессиональное образование

Формула

$$M = A + \frac{\Sigma a \cdot p}{n}$$

2. _____

Формула

$$\sigma = \pm \sqrt{\frac{\sum a^2 \cdot p}{n} - \left(\frac{\sum a \cdot p}{n}\right)^2}$$

$$\frac{\Sigma a \cdot p}{n}$$

 $\frac{\Sigma a^2 \cdot p}{n}$

Задача 3

По числу пораженных кариесом постоянных зубов мальчики в возрасте 11 лет распределены следующим образом:

- 0 зубов поражено у 4 мальчиков
- 1 12
- 2 16
- 3 21
- 4 15

Вычислить:

- 1. среднюю арифметическую величину (M) по способу моментов (индекс КПУ);
- 2. среднее квадратическое отклонение (о) и сделать вывод.

Таблица 2 — Результаты изучения пораженности кариесом постоянных зубов(индекс КПУ) у мальчиков в возрасте 11 лет

Число зубов, пораженных кариесом у одного осмотренного (V)	Число осмотренных (р)	a = V - A	a·p	a²·p
0	4	- 3	-12	36
1	12	- 2	- 24	48
2	16	- 1	- 16	16
3	21	0	0	0
4	15	1	15	15
	$n=\Sigma p=68$		$\Sigma \mathbf{a} \cdot \mathbf{p} = -37$	$\Sigma a^2 \cdot p = 115$

Этапы вычисления:

1. Расчет средней арифметической величины по способу моментов

$$M = A + \frac{\Sigma a \cdot p}{n} = 3 + \frac{-37}{68} = 2,5$$
 зуба

2. Расчет среднего квадратического отклонения

$$\sigma = \pm \sqrt{\frac{\Sigma a^2 \cdot p}{n} - \left(\frac{\Sigma a \cdot p}{n}\right)^2} = \pm \sqrt{\frac{115}{68} - \left(\frac{-37}{68}\right)^2} = 1,2$$
 зуба

Вывод: Среднее число зубов, пораженных кариесом (индекс КПУ) (М), в группе обследованных мальчиков в возрасте 11 лет составляет 2,5 зуба, $\sigma = \pm 1,2$ зуба.

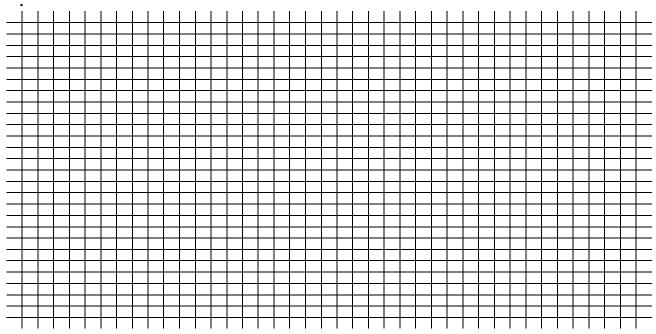
Контрольные вопросы

Определение вариационного ряда
Основные характеристики вариационного ряда; виды вариационных
рядов
Определение варианты

Тема: Средние величины, виды и методы вычисления Способы расчета средней арифметической величины Виды средних величин Определение средней арифметической величины Определение моды Определение медианы

Раздел медицинская статистика.

среднее профессиональное образование
Определение среднего квадратического отклонения
Применение средних величин в медицине


Ситуационные задачи

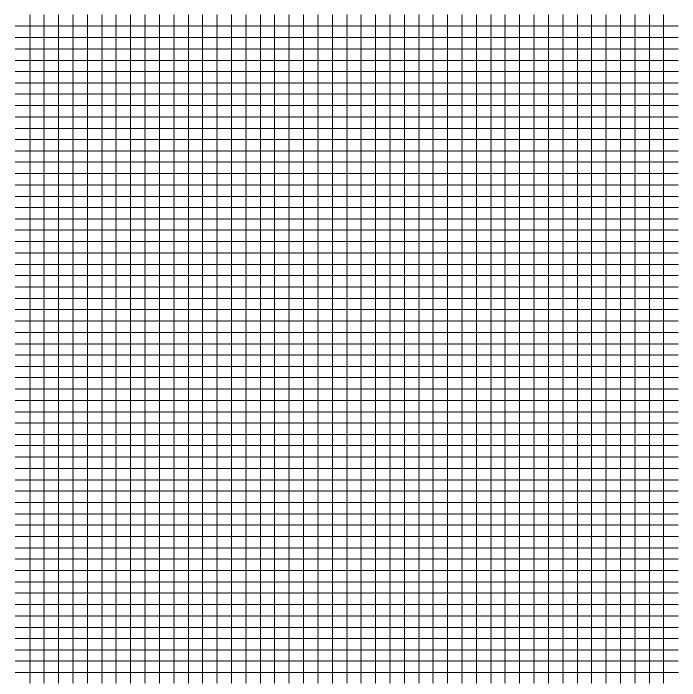
Задача 1

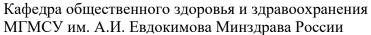
При измерении роста у 8 девочек в возрасте 12 лет были получены следующие результаты: 138см, 139см, 142см, 143см, 144см, 145см,147см,149см.

Задание:

- 1. Вычислить простую среднюю арифметическую величину (М).
- 2. Определить среднее квадратическое отклонение (σ) и сделать вывод.

Раздел медицинская статистика. Тема: Средние величины, виды и методы вычисления Вывод:




Задача 2

При измерении веса у 7 мальчиков в возрасте 3 лет были получены следующие результаты: 12,8кг, 13,6кг, 14,1 кг, 14,7 кг, 14,9кг, 15,1кг, 15,5кг.

Задание:

- 1. Вычислить простую среднюю арифметическую величину (М).
- 2. Определить среднее квадратическое отклонение (σ) и сделать вывод.

Раздел медицинская статистика.
Тема: Средние величины, виды и методы вычисления

Вывод:			

Задача 3 Гигиенист стоматологический осмотрел полость рта у 42 девочек в возрасте 10 лет и получил следующие результаты:

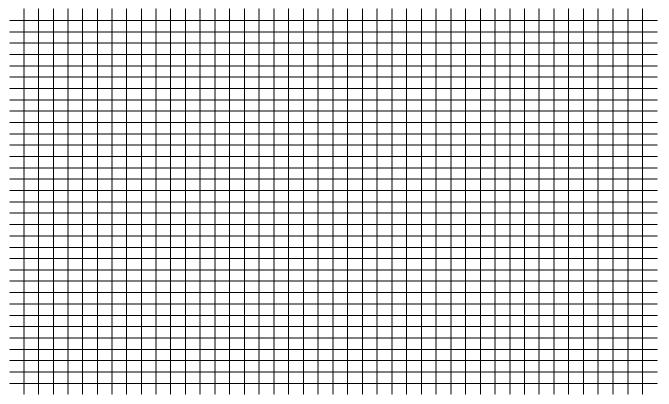
	2				
Число постоянных зубов, пораженных	0	1	2	3	4
кариесом (V)					
Число девочек 10 лет(р)	3	9	12	12	6

Задание:

1. Вычислить среднюю арифметическую взвешенную величину (М) (индекс КПУ).

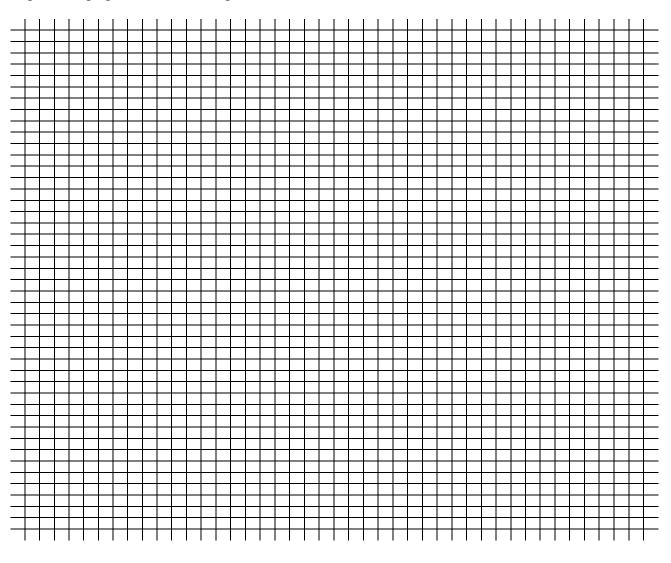
2. Определить среднее квадратическое отклонение (σ) и сделать вывод.

Вывод:			


Задача 4

Гигиенист стоматологический осмотрел полость рта у 54 мальчиков в возрасте 12 лет и получил следующие результаты:

Число постоянных зубов, пораженных	0	1	2	3	4
кариесом (V)					
Число мальчиков 12 лет(р)	4	11	16	14	9

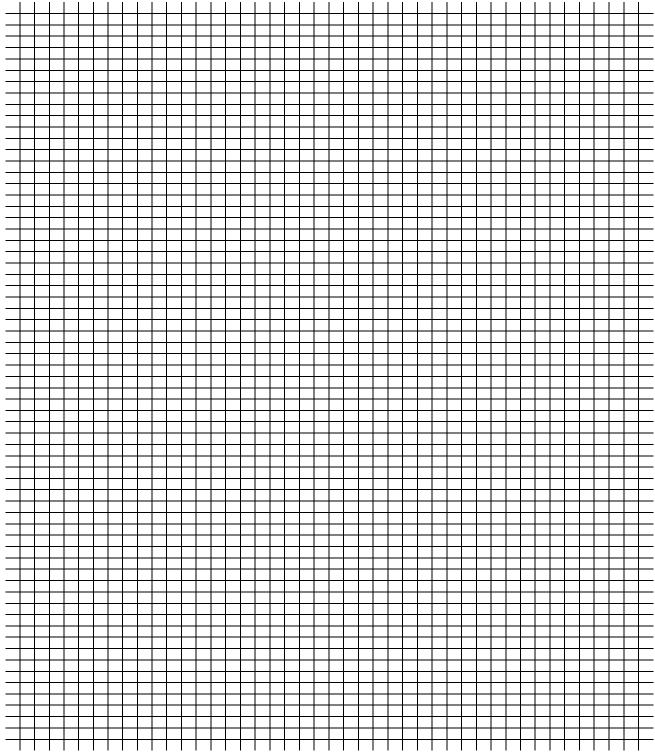

Задание:

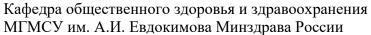
- 1. Вычислить среднюю арифметическую величину по способу моментов (М) (индекс КПУ).
- 2. Определить среднее квадратическое отклонение (σ) и сделать вывод.

Среднее профессиональное образование

Вывод:			

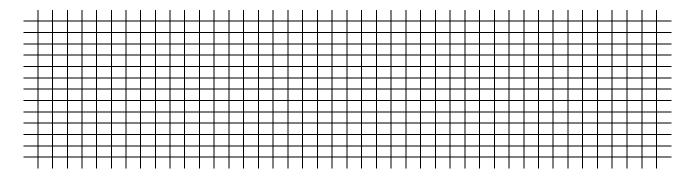
Задача 5 При измерении веса мальчиков в возрасте 12 лет были получены следующие результаты:


Вес (кг) (V)	34	35	37	39	42	44
Число мальчиков 12 лет (р)	4	7	10	12	15	8

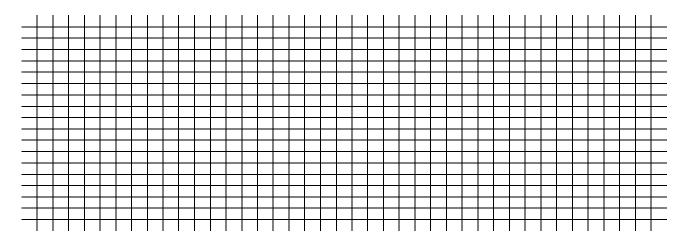


Тема: Средние величины, виды и методы вычисления

Задание:


- 1. Вычислить среднюю арифметическую величину по способу моментов (М) (средний вес мальчиков в возрасте 12 лет).
- 2. Определить среднее квадратическое отклонение (σ) и сделать вывод.

~	4	_	
('пепцее г	тиофессио	нальное об	nacodaniae
Среднее і	трофессио	manbhoc oo	pasobaline


Вывод:				

Задача 6

В зуботехнической лаборатории стоматологической поликлиники N_21 в городе Н. в отделении съемного протезирования за месяц 12 зубными техниками были изготовлены бюгельные протезы: 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8.

Задание:

- 1. Вычислить среднюю арифметическую взвешенную величину (М).
- 2. Определить среднее квадратическое отклонение (σ) и сделать вывод.

Раздел медицинская статистика. Тема: Средние величины, виды и методы вычисления Вывод:

Тестовые задания

Выберите один правильный ответ

1.	D	арианта, расположенная в середине вариационного ряда,
		называется
		простой средней арифметической величиной
		медианой
		средней арифметической величиной
		модой
2.	Ba	арианта, наиболее часто встречающаяся в вариационном
		ряду, называется
		средней взвешенной величиной
		медианой
		средней арифметической величиной
		модой
3.	$\mathbf{C}_{]}$	редняя длительность пребывания пациента на койке
3.	$\mathbf{C}_{]}$	редняя длительность пребывания пациента на койке является
3.	•	•
3.	•	является
3.	•	является модой
3.	•	является модой медианой
		является модой медианой показателем интенсивности
		является модой медианой показателем интенсивности средней арифметической
		является модой медианой показателем интенсивности средней арифметической характеристике вариационного ряда относится
		является модой медианой показателем интенсивности средней арифметической характеристике вариационного ряда относится варианта

5.	$\mathbf{C}_{\mathbf{l}}$	реднее квадратическое отклонение характеризует
		распределение признаков в динамическом ряду
		разнообразие признаков в вариационном ряду
		связь между признаками в генеральной совокупности
		достоверность результата статистического исследования
_	D.	
0.	B	ариационный ряд состоит из
		показателей соотношения и наглядности
		вариант и частот
		медианы и моды
		темпа роста и прироста
7.	Cı	редняя величина применяется для оценки
		структуры стоматологической заболеваемости
		обеспеченности населения врачами
		параметров физического развития
		первичной заболеваемости
		первичной заоблеваемости
8.	И	ндекс КПУ является
		показателем интенсивности
		средней арифметической величиной
		показателем наглядности
		показателем соотношения
9.	Ba	ариационный ряд называется простым, если каждое
- •		значение варианты встречается
		один раз
		два раза
		три раза
	Ш	четыре раза

8

10. Обобщающей характеристикой ряда измерений				
является	величина			
□ средняя				
□ относительная				
□ абсолютная				
□ стандартизованная				

Литература

Медицинская статистика: учебное пособие для студентов факультета среднего профессионального образования / Е.Е. Лобанова, А.В. Кочубей, Э.С. Антипенко, Н.Г. Дедова, А.Ф. Лебедева, И.О. Кочеткова, - М.: МГМСУ, 2015г. – 128 с.

